Definiendo Ciencia de Datos SG Buzz

El proceso de la ciencia de datos se refiere a las acciones y técnicas de los científicos para analizar y comprender datos, extraer conclusiones y resolver problemas. Dependiendo de la cuestión de que se trate y de los objetivos del estudio, los procesos precisos que intervienen en el proceso de la ciencia de datos pueden cambiar. La ciencia de los datos es un subconjunto de la IA que se refiere más a las áreas superpuestas de las estadísticas, los métodos científicos y el análisis de datos, que se utilizan todas para extraer significado y conocimientos de los datos. Por otra parte, la ciencia de datos engloba una gran variedad de herramientas y de técnicas como la práctica de la programación informática, el análisis predictivo, las matemáticas, la estadística o la inteligencia artificial. La ciencia de datos es un campo multidisciplinar que describe en líneas generales cómo se utilizan los datos para generar insights. Es posible que la primera idea que se tiene al escuchar «ciencia de datos» es una computadora y mucha información, nada más.

En resumen, la Data Science representa una ciencia ineludible para el mundo del mañana. Con la AI compuesta, se empieza con el problema y luego se aplican los datos y las herramientas más apropiadas para resolverlo. Entre otras cosas, se utiliza una combinación de técnicas de ciencia de datos, como el aprendizaje automático, la estadística, la analítica avanzada, la minería de datos, la previsión, la optimización, el procesamiento del lenguaje natural y la visión artificial. En un artículo publicado en 1962, el estadístico estadounidense John W. Tukey escribió que el análisis de datos “es intrínsecamente una ciencia empírica”.

 ¿Cómo definiría la ciencia de datos?

La ciencia de datos se basa en gran medida en algoritmos de aprendizaje automático. El aprendizaje automático es una forma de análisis avanzado en el que los algoritmos aprenden sobre conjuntos de datos y luego buscan patrones, anomalías o conocimientos en ellos. Utiliza una combinación de métodos de aprendizaje supervisados, no supervisados, semi-supervisados ​​y de refuerzo, con algoritmos que obtienen diferentes niveles de capacitación y supervisión de los científicos de datos. Los científicos de datos también crean herramientas y tecnologías de IA para su implementación en diversas aplicaciones. En ambos casos, recopilan datos, desarrollan modelos analíticos y luego entrenan, prueban y ejecutan los modelos contra los datos. Los flujos de trabajo de la ciencia de datos no siempre están integrados en los procesos y en los sistemas de toma de decisiones empresariales, lo que dificulta que los responsables de negocio colaboren de manera inteligente con los científicos de datos.

Muchos científicos de datos iniciaron sus carreras como estadísticos o analistas de datos. Pero conforme el big data (y las tecnologías de almacenaje y procesamiento del big data como Hadoop) comenzaron a crecer y evolucionar, esos roles también evolucionaron. Es información clave que requiere análisis, curiosidad creativa y un don para traducir ideas de alta tecnología en nuevas formas de generar utilidades. La analítica de datos se aplica a las empresas desde hace mucho tiempo, nos permitimos citar a W. Y ya que lo mencionamos en el punto anterior, vale la pena aclarar que los software de código abierto no son peligrosos, al menos no tanto como para descartar su uso.

La plataforma de clientes de HubSpot

Un analista de datos puede dedicar más tiempo a los análisis rutinarios y proporcionar informes periódicos. Un científico de datos puede diseñar la forma de almacenar, manipular y analizar los datos. En pocas palabras, un analista da sentido a los datos existentes, mientras que un científico crea nuevos métodos y herramientas curso de ciencia de datos para procesarlos y que los usen los analistas. El portafolio de productos de ciencia de datos y ciclo de vida de IA de IBM se basa en nuestro duradero compromiso con las tecnologías de código abierto e incluye una gama de funcionalidades que permiten a las empresas desbloquear el valor de sus datos de nuevas formas.

cómo definiría la ciencia de datos

Busque una plataforma que elimine la carga de TI e ingeniería y facilite a los científico de datoss la creación instantánea de entornos, el seguimiento de todo su trabajo y la implementación sencilla de modelos en producción. Puede ser fácil confundir los términos “ciencia de datos” e “inteligencia empresarial” (BI) porque ambos están relacionados con los datos de una organización y el análisis de esos datos, pero difieren en el enfoque. Los datos pueden ser preexistentes, recién adquiridos o un repositorio descargable de Internet. https://voxpopulinoticias.com.mx/2023/12/un-bootcamp-de-programacion-que-te-prepara-para-tu-nueva-profesion/ Los científicos de datos pueden extraerlos de las bases de datos internas o externas, del software CRM de la empresa, de los registros del servidor web, de las redes sociales o adquirirlos de terceros de confianza. De vuelta al ejemplo de la reserva de vuelos, el análisis prescriptivo podría examinar las campañas de marketing históricas para maximizar la ventaja del próximo pico de reservas. Un científico de datos podría proyectar los resultados de las reservas de diferentes niveles de gasto en varios canales de marketing.

Leave a Comment

Your email address will not be published. Required fields are marked *

EN | DE